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IRAJECTORY OF RAYS IN A MAGNETICALLY 'ACTIVE TONTZED

MEDTUM =~ TONOSFHERE

Ya. L. Al'pert

(Report read at the conference of the All-Union Scientific

Council on Radiophysics and Radiotechnology of the OFMN AN USSE.
on 13 December 1947,)

1. INIRODUCTION

The question of the trajectory both of the monochromatic

wave and of the quasichromatic group of waves (signal) in a non-

homogeneous anisotropic medium has not been fully analyzed up to

this time,

In this article we examine the study of radio wave propaga-
tion in the ionosphere, Tt presents an ionized nonhomogeneous

medium consisting of free electrons and it corresponds to the case

of artifical anisotropy provoked by the external magnetic field of
the earth.

The active magnetic properties of the ionosphere lead to the
fact that the monochromatic, linear polarized, electromagnetic
waves which are propagated in it are subject to double refraction.
(In the case of longitudinal wave propagation, when the direction
of the ray coincides with the direction of the external magnetic
field vector, we have essentially the Effect of Faraday, while in
the case of a transversal wave propagation, when the normal to the

wave front and the external magnetic field vector are perpendicular

to each other, we have the Effect of Cotton-Mouton, )
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In the linearly polarized signals which constitute the group
of linearly polarized monochromatic waves, both groups of waves are
divided ~- the signal splits into two elliptically polarized sig-
nals each one of which is subject to a different refraction and
absorption in the medium. Because of this, these signals, called
common and uncommon, diverge and are propagated in the ionosphere

through different paths.,

It is known that the ilonosphere is nonhomogeneous according
to the height z, and the value of the square of the refraction
exponent n® of each one of its layers diminishes with the increase
of the height over the surface of the earth from a value, equalling
one at the beginning of the layer, to values equalling less than
zero. The value ?2 depends on the degree of ionization of the
layer, the wave frequency and the orientation of the external mag-
netic field in relation to the front of the wave. This leads to
the fact that with all ffequencies which are lower or nearly
touching the value of the so-called critical frequency with which
the layers bééome transparent, there occurs a complete reflection
from the layer (not considering the absorption in it). Therefore,
beginning from a certain height n? <C 0 for the given frequency,
the further penetration of waves of this frequency into the layer
ceases and all the energy of the wave falling on the layer is
returned by the layer. (One must note that upon passing the
critical frequency in the direction of higher frequencies, the
reflection coefficient from the ionosphere drops sharply.) It is
natural that each of the waves, common and uncommon, is subject to
a complete reflection in different parts of the layer since they

have a different value of n? and the condition for a complete

reflection n? = 0 (1) is satisfied at various degrees of ionization (2)
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The retardation of each one of the waves reflected by the layer

1§ also different in relation to the falling wave.

Tn view of the fact that the approximation of geometrical
optics is applicable 4o the analysis of radio wave propagation in
the ionesphere almost up te the very point of refléction of the
wave (where n? = 0), one may speak of the trajectory along which
the wave is propagated from the beginning of the layer to the
region of its reflection and back. In other words, we may speak
of its path in the lonosphere, that is, the examination of the
question from the point of view of rays is fully justified. It is
obvious that the question of the actual trajectory of the wave in
the ionosphere and about the shape and type of the wave reflected
from it offers considerable interest. At the same time, up to the
present this problem has not received its due explanation in litera-
ture, mainly because of the complexity and huge volume of the
theoretical calculations. Because of this a series of interesting

and important facts were overlooked and not examined to their

conclusions

Tn the old work by Zhekulin [3] it was mentioned that the
complex correlation between n? and the angle between the direction
of wave propagation and the direction of the magnetic field of the
earth must lead to a rather "peculiar" trajectory of the normal to
the wave front through the ionosphere (see below). However this
point refers to a physically unreal case since it characterizes
only the complex kinetics of the front normal of an infinite flat
monochromatic wave. In practice, on the other hand, we always
have to do with a limited sinusoid =-- with a group of monochromatic

waves, and also with a flat wave limited in space, as we may put
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it with a "plece" of a flat wave, or with a spheric wave.

Tn a later work Booker [4] analyzed this guestion more
thoroughly and presented a correct physical picture of the
phenomenone (Tt should be noted that the author became acquainted
with Booker's work only after he had already completed the basic
part of the present worke) Booker, however, in many respects

limited himself to the general, theoretic side of the questicne.

Tn relaticn to the new phenomenon in the ionosphere, experi-
mentally discovered by the author, and named "Effect of Tonosphere
Anisotropy" [5), there arose the necessity to calculate the trajec-
tory of the rays in the ionosphere. During this calculation certain
theoretical difficulties were encountered, The basic difficulty
however was the hugé volume of the calculations in view of the
necessity and desirability (and this presented an essential interest)
of carrying the calculation to a numerical result, to a graphe
This result could be achieved by the method of graph-analytical

calculatione

This present work contains the results of these calculations
and the analysis of the trajectory of the ray in the ionosphere
while also examining certain characteristic peculiarities of the

wave reflected from it.

2, TENSOR OF THE DIELECTRIC CONSTANT AND THE

COEFFICIENT OF IONOSPHERE REFRACTION

Let us examine the propagation of a flat monochromatic wave

- -

bt _ Ne o . 2.
& (“0—”):::_@.“?' (2:1)

T
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in an Lonized medium consisting of free electrons. Here N(CZ,/?,)f)
is the normal of the wave front (4 ,F ,}/ are its anguler coeffi-
clents, respectively the cosines of the angles & o, o, Yo of the
normal with the axes X, Y, %), @wis the angular frequency, t is the
time, r(x, y, z) is the space point vector, s is the speed of light

in a vacuum, and n is the refraction of the medium,

We begin with the electron movement equation

°

My, = —e £ - &]r H], (2.2)

from which the member symbolizing the medium absorption has been
removed and where m and e are respectively the mass and the charge
of the electron (the negative sign of the electron charge has been
taken into consideration); ro(Xgs Yos Zo) is the electron displace-
ment vector; E is thé vector of the electric field of the wave (it

is assumed in (2.2) that the effective field acting on the electron

is Eges = E); and Hy is the constant magnetic field of the earth.
Since the vector of the polarization of the medium volume unit
is

lwt
= and r,Ce
P = Ngerg o P

where N, is the number of electrons in one cubic centimeter, instead

of (2.2) we will have

- PeX E«LA[PI%:«J /

(2.3)
where
Ve —. = (2.1)
oW me el
5 -
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The equation (2.3) introduced into the expression of the

electric induction vector D = B + LTP, glves
hahy= Ch L/hahe tih
Do= v)E +( 7“37{J;,)Ey}(——’5—7{?—¥—v>Em,

0 -Z ™ -y o
> c‘"———l~—~*~*‘7‘.i;°" v)ﬁ-l-f»-ﬁwbs-r(f’-i-’aﬁfwf—-u e

Tz = h%hzwkj Foyt _Mv-‘“[u..)/: pf1=""Z
¢ )il 30-C2m e,
and thus the tensor of the dielectric constant appears as
yodzhy o hwdy-ibs o hwha =il
e Iy e
. > .
f}qﬁ = lli&lljujléll v, /- !-4é€ﬁ-v . bji}Lfﬂll:_éji y  [2.6)
/_/_)z_ ! = A® /.../)1
kthz.—ibgh 3_"«5 ha -:_éjf_. v)/__ /'-))%
=i —h RVEE

From (2.6) it can be seen that the tensor is a hermit [isolated

instance?].

In order to draw the basic formulas it is more convenient to
choose the system of coordinates so that the axis 2 coincides with

the vector Hy. Thereby (2.5) assumes a simpler form

Dz = ef,. - & Ej }
Dy= igEy veky. }, (2.7)
De = ¢ Fa, J

where v

(2.8) .

Henceforth we will proceed from the phenomenological equations

L
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of Maxwell
D .. o
¢ vot H=-g";'" Avd cvo‘f‘E—--"at

and from the wave equation deriving from it
- Q)Z -
AFE = é)\r/.\d A;\,E—k-—&—;'b""ol

which are transcribed for the flat monochromatic wave in the

vector form (taking (2.1) into consideration) as

D=w HN], H= -7 [En] (2.9)

and

e [E e 0 e 2 EO.

Substituting (2.7) into (2.10), we obtain the homogeneous

systen of equation relative to Ex, Ey, Byt
(- e -yrat) Ext Lnap +ieDEy -r(-w‘-qr‘)ﬁ,_ = 2))
¢t -af _LE/)EI*‘("’L"E"’%z)Ef ¥ C"’jﬁ‘?r)gz = D p(2a1)
(-n"‘dy) Ex ‘f‘/'"rf‘/?f) Ey+ (3= -8o ™I Ez: O

The condition for the existence of a pontrivial solution for

the algebraic system of equations (2.11) is that its determinant

should be equal to zero:

mr -t ML, —wrafeig,, - WALY
pgpin, | weewAL Ay = e
X .
- c(\(,J -»{"/5\{! 7'77"‘50")71\(2‘
The determinant gives a pi-square equation with respect to n
vo oa (8- -B8y*-(B™ £+ E9,)
N+ n r °)Y “C Vo (2.12).

2 ~C€ - 60)‘f1’

50(52_"81;) - 0
S-(&—@o)Yz -7 -
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from which we obtain, by utilizing (2.8) a certain formula for né --

the square of the exponent of lonosphere refraction:

L ZVO—V\ _ “ﬂ;:::::ﬁ
=) ' ) :
2(1'73"' AL[/ _“{2) 4 V},‘/(/"Y&)z'J‘/‘zr(?j%)‘O\.

From the formula (2.13) follow the double refracting properties of

the medium. The upper sign of the rool corresponds, as is usually
said, to the refraction exponent n; for the common wave, while the
lower sign corresponds to the refraction exponent ny for the un-
common wave. An analysis of formula (2.13) shows that this termin-
ology is not satisfactory since both waves are essentially uncommon,
Figure 1 shows the relation of 1/n1 and l/n2 to Y for various
values of v and for a fixed value h? = 0,1. For clarity's sake we
assume that for sach one of the curves shown in the figure the
values of 1/n| and 1/np, when Y o= 0( Y = 1), are equal to similar
segments for all the values of v. Thus the curves in the figure
characterize the change of the shape of the wave front with the
increase of v (and consequently also of N, (see (2.L)), i.e. with
the nearing of each wave to the place of its refraction where,
respectively, nj = O and ny, = Q. (See also Figures 2 and 3 where
we present the family of curves nj and ns in relation to v for

various values on o)

From Figure 1 we see that the shape of the front of each
wave changes substantially upon penetrating into the layer. In
the reflection sector a common wave assumes a saddlelike shape,
while the uncommon one assumes a strongly stretched elliptical
shape, In other words both waves cease to be spherical in the

medium, The so-called common wave, one may say, has more uncommon
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properties than the one that we are want to call . uncommone

Figure 1. Relation of the quantities 1/ny and 1/np, respectively,
for a common and an uncommon wave, toY o for various values of v

and for a fixed value n? = 0.1

Figure 2. Relation of the refraction exponent nj of a common wave

to v with various values of Y
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Figure 3. Relation of the refraction exponent n, of an uncommon

wave to v with various values of \{

Tn order to fill out the picture let us mention a few general

properties of the expression (2413)s

Tn the whole frequency diapason the refraction exponent ny
has but one zero which is not related to the quantity h, i.e., to
the external magnetic field, and is determined from the condition

(ih case of{ =lnl=0withv=l+h)
vo = 1 (2.14)

This same condition is observed when the external magnetic
2
field is absent, when ny = np = 1 - Ve The refraction exponent np

has two zeros for h < 1, with

v =1~h and

<
it

1l+h (2-15)

L}

For h> 1, np has one zero, when v = 1 + h.
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The expression n® has infinite values for nj in the frequency
diapason h co sYo ) 1 and for np in the frequency diapason h cos Y 0 <l

for the values of v determined by the equation

(2.16)

-8

3, COMPONENTS OF THE FIELD VECTOR; POLARIZATION

PROPERTIES OF THE WAVE

The equations (2.,11) allow to determine the components with
a precision up to a constant multiplier (here and later the sign

() is used to mean f"proportionate")
E M'n"Y{d (n* -2)=cfg,} ef?. (3.1)
Ey ety {f(m*-28)+ t'a’,e,} et?,
Ezcn{n™¢) (n“}/‘ -£)- ‘52,J)<3£7p

where

({Q:W(f*ﬁ—cﬁ"h>.

From (3.1) we take the actual parts of E, indispensable in

the future for the calculation of Pointing's vector:

Re Ex oq*n"\{{ff(h"\z) cos §+Bg, sin ?”},
| Re E}m ,,7-"{{3' (n*-¢) cos ¢ -&e;, Sin ??}J (3.2)
e Ezen {(7)1\(7’ -g)(m*-¢) - 87} oS @ .

Utilizing (2.9), we get from (3.1) as well as from (3.2)
? Pe Hy v de(;ﬁ},z st - 7 Lin*-g)g+ €%] cos 7
Re Hy o fs,n’y* sin pranllnm=0es ef] cor 2.1 (33)
e Kz e -¢, nty (1 —Y3> $in T¢

- 11 =
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} nt . .
Re Dy n Ex— 6615 ¢ -(cz__;,")] ?.o.{ g-- € dn* siy 7% (3.0
?C.'DZC/) {(7)"‘-£)(712'}/7‘—£)'E;L} _aps c(_

from the formulas (3.2) + (3.4) it follows that:

(QQH'/V)‘:O, (/?e'D'N)= e, 0

( (QeElRCH) =0, (ReD. Re H)- O, i (3.5)
(l?cE 'N) # 0. _,1

The calculations (3.5) are for control and prove the correct-
ness of the derived formulas since in an anisotropic medium the
vector of electric induction is no r collinear with the electric
vector. Here we do not analyze the expression (Re E + N) because
the following paragraph will be devoted to a detailed study of
the behavior of Pointing's vector from which this question too

will becoms clarified.

From formula (3.1) and the following we see that with an
A4 f arbitrary direction of N in relation to Ho (i.e. withY # 0 and
Y # 1) both waves (for n] and np respectively) are polarized

along an ellipse,

In fact we get

e By Fe = R0 B e
:{(w-e)(wz;_ )__Ez}

s
k and similar expressions with ima inary members/ for the magnetic

| vector H and the vector "of electric induction D,

In the case of a longitudinal propagation of the wave, when
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the direction of the normal of the wave front N colncides with Hy,
the vector of the external magnetic field (7/ =1, a-= /ﬁu o)

we have for both waves
EZ = HZ R DZ = O

and, respectively for the common (index 1) and the uncommon
(index 2) waves

Jim 'Evc):eswﬁ)..' ) o sty (2e) = =4,
Y»/(E“y Cef-ia HT-): ! (?v), ’

i (&) ir = (1/4_ @;ﬁ L (e
‘ ' Y| \EY/ Hen “ "DJL.*'.f

i.e. all the vectors of the field are polarized along a circle
and the common wave is polarized to the left, while the uncommon

J ‘ wave is polarized to the right. (A detailed analysis of (3.6)
shows that a similar difference in the rotation direction is found

also in the general case of an elliptical polarization of the wave.)

On the other hand, in the case of a transverse propagation
of the wave, when \g = 0
E. #0, Fxc Ey, = ¢
/{‘L,‘-"O H%,ﬁOI //jf

#

'D?.‘ # 0/ ’D'ﬂ-,: D:/[ = 0

i
S

(3.8)

! i.e. all the vectors of the common wave are polarized in linear

fashion. This however does not happen for the uncommon wave, For
it

M, # 2, Pro = //32‘ =0

Dzz = 0 Dra # 0, Dy, # O (3.9)

-13 .~
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A | ke, s (B
Y0 ”j

Re - latg 4 (3410) .

i.e. the vectors D and H are polarized in linear fashion while the

electric vector is polarized along an ellipse. (In writing
(3,7) % (3.10) we utilized the 1limit correlations issuing from i
(2.12): i

7’)?‘2""2:1@, W‘um{:./ Am/'h' o sza/ﬂ """“‘“’J" “)AQ“Y =0 1

The properties of the uncommon wave with.}/ = 0 may at first

> : sight seem strange because of their unusualness. In the following

paragraph, however, with the study of Pointing's vector this result

will become understandable.
L, STUDY OF POINTING'S VECTOR

It is known that in nongyrotropic anisotropic media the i
direction of propagation of the ray coincides with the direction
of Pointing's vector which characterizes the energy flow. In

magnetically active media, however, (and in the ionosphere in

B NS TR

particular) in order to clarify the question of the direction of
ray propagation it is essen'biual to make a special analysis of the
i character of change in Pointing's vector and to establish the !
correlation between it and the direction of the ray., This and the

following paragraphs will be devoted to the analysis of this question.

.- With a preéision down tcg a constant multiplier Pointing's

|

1

| vector is - -~
i

g =~ (Re E * Re H).

-1 -

| g
@

Declassified in Part - Sanitized Copy Approved for Release 2012/04/26 - B Pes bobaahaoe TSt 5




Declassified in Part - Sanitized Copy Approved for Release 2012/4/26 H

CIA-RDP82-00039R0002001200:

Utilizing (3.2) and (3.3) we obtain
Spm=n e =y s+ -n'yge, (7 -8 ~6%) Sin ¢ eos ¢ -
: - ne {e(n* -0 *if} {(n=e)(n* =) (n‘T‘»i) 47} cos® P
g Sy iy Iy sin g (OreeP=ef] sng o £ ()

! —pp{elnr-e)s €]} {mP-@) (YT o) et} oot @

| S mo Sy ez (7Y% sin® @ £y (1-y) (=) {sr®2) ¥ £} s,

Let us further say that & =0 (i.e. ﬁg =1 - Yz). This

does not destroy the generality and makes the analysis of the

change of S more conveniente. In this case the expressions (Ls1)

are transcribed as

Sy e ""7372#’5. ((’777‘ _.€>?— - F,T} sin of CoS c(, |

5y e Y\;Y"ﬁg? (1-y*) " ¢ =
‘ o (u2) i
- )«)16 {9/ (VIL‘ﬁ)+ 22'} (m‘-g)(n}x{?’—g}-ir} cos ztf ;

1 Sz m'h‘\{%f‘ (/-\{".) Sim? 70 " ng\( (i ‘,Y-L)(h1~a)+£:}c,os" ?-

‘ Figure L shows the change of position of Pointing's vector
S in the space of common (ny) and uncommon (np) wavéé with various
values of\{ o» the angle between the normal N to the wave front
i and the vector of the external magnetic field Hje From Figure ly we
see that S delineates a cone which touches the vector No During
} one period the vector S makes two revolutions around the basee
The base of the cone, consisting of a flat curve of elliptical shape,

1 is placed symmetrically in relation to the plane (HN) which divides
|

the cone into two equal halves. With a decrease of the angle\f °

ed for Release 2012/04/26 - CIA-RDP82-00039R000200120028-7
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the cone is flattened (the angle y of its apex 1s reduced) and
finally is reduced to a straight line whanY o = 0y 1egey with a
longitudinal propagation of the wave the direction of S is constant.
Whan\( 0 > ..T{ for the common wave, the base of the cone is flat-
tened so that its components Sx and Sy diminish, while for

o % X (transverse propagation) the direction of S is constant
and coincides with the axis Y (direction of N)e For the uncommon
wave, on the other hand, in this limiting case the cone is reduced
to a flat curve so that its base lies on the plane (XY), touching
the axis X. Thereupon, because of the symmetry of this curve in
relation to the axis Y, the direction of S coincides with the axis
Y, i.e. with the direction of N. The vectors S of a common and of
an uncommon wave also differ in that the cone formed by the vector
S of a common wave touches N in the interval of transformation
Y o ='O + L;. from the external side, i.e., it is placed outside
of the angle (H,N), while for an uncommon wave it is placed inside
the angle (H,N) (see Figure L); the opposite position of the cone

happens in the transformation interval Y o =j,£ + 7 where the cone

of the common wave is placed inside the angle (HoN) and that of the

uncommon wave outside of that angles

The direction of Pointing's vector, averaged according to
time, as can easily be shown, coincides with the direction of the
vector traced from the apex of the cone through the center of its
base and lying on the plane (HoN)e 1In Figure. i this vector is

named S (the line indicates the averaging according to ﬁme}.'

- 16 -
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)
Tigure L\ Change Of p051b10n Of Point S VG,CbOI S in the SP&CG Of
1g .

|
|
.. ) ‘
i time
uncommon (nz) wave accordlng to \
an >

£
a common (m) wave and ©

for various values of \( °
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S

The averaging of S according to time gives
Sy = o,
syt (nogpas (1) -np Bon-ays 1] L0y 1]

)
Iy {V)"Yaﬂ; (1-y) 4y (1 -y Cn™= i)[if*"*i)*?}.]:

from where, by calling the angle between Ho and'g.qj , we get

Tan U= Tow y MY (- y)-Eln-g) 4 7] [0 6) (nry=-6)-2% ]
=ty 2 (1)

Wt oy D #0217y G- ) Eor g4 =)

Figures 5 and 6 give the families of curves with the values

of the angle qj o between S and N equal to

P, =Y. - vy ' (L.5)

These values have been computed with the help of formulas (L.L),
respectively, for the common and uncommon waves (nl and np) in

relation to Y o for constant values of y and h? = 0.1, We will
wtilize these curves later in calculating the ray trajectory in

the ilonosphere,

From the figures we see that with certain values of v and \{

the direction of the vector S differs considerably from that of N.

- 18 -
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The averaging of S according to time gives

—

Sx = o, '
B e R 2 T A L (e i)
’ (4e3) (1/39

o o . | <
ve Ty WsYat"l‘ (1 '\(7’)‘{" )’)?Y (' '\(1) (n™~ ﬁ)[&(»"-i)*%?.']:

from where, by calling the angle between Ho and —S—L}/ s we get

Tan y = Tow Y wye (1-y")-[en*-g) E'ﬂ[@‘—6)(”}‘#'5)'5217‘(&'&)

Wt (gD (oY - DE0 24 )

Figures 5 and 6 give the families of curves with the values

of the angle LP o between S and N equal to

) = — k}) ()-L-S)
Yo = Yo ’

These values have been computed with the help of formulas (Lok),
respectively, for the common and uncommon waves (n]_ and np) in
relation to Y o for constant values of \{ and h? = 0.1, We will

utilize these curves later in calculating the ray trajectory in

the ionosphere.

From the figures we see that with certain values of v and \(

the direction of the vector S giffers considerably from that of N.

- 18 -
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Earx 'ﬂ‘»‘r‘;z‘ D-’

Figure 5, Family of curves expressing the relation of the angle (Vo

3 2.
to the angle\( o between Hy and N for various values of v when hé=0,1

for comnon wave (nj)

For m2- h*= o.
AN
TN

| et
‘

&

7
\%

(€

Pigare 6, Same as in Figure 5 for an uUncommon wave (n2)
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5, DIRECTION AND MAGNITUDE OF GROUP SFEED

In practice we always have to deal not with a monochromatic
wave, bubt with 2 signal, or group of monochromatic waves. There~
fére in order to find the divection of the signal we must examine
the propagation of the quasi-monochromatic group of waves, pre-
senting the components of 211 the signal field vectors in the form

of Fourler's integral

L= (Y g oo diedige

Tn the integral (5.1) g(k) is the function characterizing the shape
of the signal. It has, as we know, a sharp maximum in the vieinity
of k. The wave vector for anisotropic media has in the general

case the form

o @ K;@*iif_e_.-& (5.2)
ﬂ('" e }1[ivl k7K g K. ) K g

or, with the specifications given above:
[ -
K:—th(co,a_,ﬁr)h \
. T % N I e 3
,K«w/rr,cwrjuc,__) /=a*+P" Yy

'<F:4"K K‘S;/ﬁ'K/ : K2=\{K

(543)

4

Choosing, just as we did in Section 2, the direction of the
axis 7 along the vector of the external magnetic field Ho and
utilizing for n the expression which is written in as a function

of the angular coefficient\i (see (2.13)) we geb:

- 20 -
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2
% 2

E NS LA

S

e

R S 2

, K =% s N (5.1)

| "o resolve, &s usual, the integral (8.1) in the vicinity of l,
ko (the fixed frequency (Dp ., Limiting ourselves to the 1 ;

; first two members of the resolution !

{

H

!

W= w, B AK, * AL AKyT @z)
? (@H; * aKﬂ j 0 Kz U !

where

and X5 Yor %o are respsctively the unit vectors of the coordinate %
system axeSe %
% From (5.5) we get by the usual way the vector of group speed i
of the quasi—monochroma‘oic group of waves (signal)
‘g ,
i .6
2 K

which determines the measure of the group speed and the direction

of propagation of the quasi-monochromatic group of waves.

The corresponding calculations give us

Deéiéséifiedir;ﬁ’art-é“"/v oy Ao S e
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c 2w ¢ S Pw

fpom where it follows that the magnitude of the group speed is equal

to

4;\

= d—fﬁ‘(‘ v — (5.8)

d )

The angle between the vector of the group speed U, which

characterizes the signal propagation direction, and the normal to

the wave front N is determined from the formula

(_%M = cos(ﬁa)sf / . (5.9) ;

* 3Y

Turther on we will also need the angle between the axis Z

TR

and U, For & =0, from (5.7) follows

3w m ' i
: ZL/’nv {HZQ = &K,y,, — __é?_.. a\{ | (5.10)
Y 20y) _ T an \
TR

anl Ch 1
or, s‘—u:bsti‘r,uting \
-
[P I— n(t 3" b () \
A E_U (v~ ORI ) (1=y*) h

which we have determined from (2.13) we transcribe (5.,10) in & way

- 22 -
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more convenient for calculation

ctsw (WZ = ataw Y SR,
Au (> o Th T Y.,.iw_,\g___.:é-_( w (}_v o (5‘.12)

¢-m DR

d
If In = 0, which occurs in an 1sotropic medium, then from

X
the formulas (5.8) and (5.9) it follows that

U - ——
© alen)

de

and also that U and N are parallel.

Figures 1 and 8 show families of curves for the relabion
between the magnitude of the signal group speed Uo propagating in
an isotropic medium and the magnitude of the signal speed U in &
magnetically active medium formula (5.8) in relation to \{ for
various values of v with ne = 0.1, respectively, for common (n)
and uncommon (np) waves. From the figures w;e see that under cer-

tain conditions U differs from Uy to 2 significant extents

Tt should be mentioned that the necessity 1o apply formulas

. (5.8) and (5.9) in calculating the propagation of radio waves

in the ionosphere has not heretofore been mentioned in literature.
Tn a number of works the formula for the isotropic medium was
erroneously applied when making these calculations. Further on,
however, Wwe will show that the group path of the signal in the

3 onosphere may be calculated after a formula analogous to that for
ghe isotropic medium, Because of that, in certain cases, correch

presults were still obtained with the help of incorrect formulas (6]

-23 =
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Figure 7o Family of curves expressing the rela'bio;h between the

ratio magnitude of the signal group speed Uy in an isotropic

medium to magnitude of signal group speed U in a magnetically
active medium and\{ HoN for various values of v with h? = 0,1, i

(Common wave ny) i

7/
| T Z
\
j \“\' —
“nag
e

Figure 8, Same as in Figure 7, but for an uncommon wave (no)
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The calculation of the signal direction in the ionosphere,
nede in this paragraph end 1leading vo the Pormulas - (5.10) and i
i (5.12) allows us 4o control whether the direction of the vector

S and the direction of the signal propagation colncide., In

practice this means checking the sameness of formulas (5,10) and
‘ | (L.L). Comparing these we get the expiession
(ot 0120 1-7) (197 ) ealior= b+
| | >3 [(!—v)’—h‘] U-4>-v) *E'-v)z-/ﬁ:]} :{néll—f‘-y) (-4%) Y* =
ot 1=y =i - h Y IR Y-y G-yl
enr [l B 0=k -fu-t -4} =
(b (A (a-hE-2v -7 wl-z b+ 4y v")}, (e

which 3.8 reduced to? polynome of the eighth degree in relation to

I

n. We introduce n into (5.13) (see (2.13)) aftef which it may

be transcribed as

[ =l bty Alvf) (-2t 2hT+ uv—vA"—D—v’“ALx(LV)-i
(5.1h)
“1‘"("3‘/—1423% vhe 4 3v* —v3)= 0 l

4 L This leads us to the expression
2. [l -[n] ’W‘(Vﬁdv}tz}z’) ]t lrh - YL) =0, (57787

which, as we See, is equal to Zeros This proves that §”U.
(Recently S. M. Rytov has proven this theorem in its general

aspect f7]%

! Tn conclusion of this section it is useful to dwell on certain
properties of the signal, arising out of the analysis of the

]
% formulas developed aboves

From physical considerations it is obvious that in the case

of a homogeneous mediuwn the time of group retardation of the signal

- 25 -
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15 equal to

ijr ="/¢1*q1"'21— -2 = ‘3’ = B (5.16)
u 3w 2w e ,.
a'ky ENij 3Kz j

whence, by way of simple transformations, we get i

tgr = Zxr +ﬂ4 t Yz P (54L7) )
’89/“{3 Ya/‘u_ |

Since (5.7) gives

A Q. 4 gL 4
3Ky '66”1\& Yafiz +

we get i

tgr =L J.@). (2z+ By ryz) - (5.18)

Tn the case of a nonhomogeneous medium the time of group

retardation of the signal, in the approximation of geometric : 1

optics, is equal to

- ter - j'_d; - 4 (044 s
Jou Ueos(Nu) o

nitized Copy Approved for Release 2012/04/26 : CIA-RDP82-00039R000200120028-7
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where ds is the element of length in the direction of the signal
U propagation; and dl is the element of length in the direction

of the normal to the wave front Ne In (5.19) we have

-E‘-Lw& = Cos CN(L)J
U

which follows from (5.8) and (5.9).

The expressions obtained =- (5,18) and (5.19) -- show that
the formulas determining tgy are identical to the known formulas

for the isotropic medium,

d e + 8 de 4 Y 4o = o (5.20)
diy | dﬁj & K

will be the condition for the reflection of the signal in a

stratified nonhomogeneous medium, This condition, within the

approximation of geometrical optics, means that at the point of

reflection the tangent to the trajectory of the ray must be hori-
Y /

zontal, HereC(/ ﬂ J Y are respectively the cosines of the

angles between the axis Z (along Hy) and the direction of Z!', along

which the medium is nonhomogeneous in layers.,

Trom (5.20) we get

i}_\_ Yj' CoS(.N,Z')
LT (& Nz ) e

(Upon vertical descent on the layer the reflsction condition n = 0

is general.)

It must be remembered that in formula (5.21) ‘f = cos (NHg)

is the cosine of the angle between the normal to the wave front N

- 27 -
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and the vector of the external magnetic fleld Hge

The signal reflection condition in a magnetically active
medium thus obtainsd differs from that in an isotropic medium,

where at the point of reflection
n = sin;( oy cos(NZg) = 0,

where 7C is the angle between the normal and the Z axis at the
beginning of the layer, i.e. is the angle of descent. (The cal-
culabion of the values of v from (5.21) at the point of reflec-
tion is very cumbersome, However, one may utilize the graphic
method to solve this equation which, upon utilization of additional
conditions relating v and*{ (see (6.k) and (6.5)), permits con-
struction of a chart for vo(sin ;ta) which will determine the

value of ionization of the layer at the point of reflection in

relation to the angle }Lo of wave descent upon the layer.)
6. METHOD OF CALCULATING THE TRAJECTORY OF THE RAY

In the preceding sections we obtained formulas which allowed
us to calculate within an approximation of geometrical optics the
trajectory of signal propagation in a nonhomogensous, magnetically
active medium. Because of their complexity they are solved only
by way of combining graphic and analytical calculations. This
provides satisfactory precision for the drawing of the whole pic-

ture both from the qualitative and the quantitative points of view.

Let us assume that at the beginning of a layer along the 2
axis the normal of the descending wave forms with the Z axis an
angle )L,Dand lays on the plane XZ which thereby becomes the plane

of wave descent. Let us choose the system of coordinates shown in

- 28 -
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FLoure Je With the specifications assumed before, the veclors wh:ich

interest us are 1nscribed EE]

H,= H.(an, Bu, Vi)

N =N (o)
W = tl (62' ) fg| ‘\{l)'

Tigure 9

Because of the law of Spnellius (see the general gheory of
anisotropic media in optics text books) the normal to the front of
waves of different types remains everywhere parallel to the plane

of wave descente

We are interested in calculating the values of angular

coefficients ct, ‘3‘ \{' of the group speed vector U along the
' ’

- 29 -
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whole propagation path of both waves, from the beglnning of the
layer to the point of reflection and back, i,e., in the interval of
v values from v = O (beginning of the layer, see Section 2) to
those values of v at which the reflection of each wave takes place.
The values of (Z( (v), /5, (v), \{I (v) are determined by the sys-
tem of equations

‘(Z/ /‘91 T'I

ZhBuy YH|=0,
4 0 Y

K/d 'i'Y'Y = (ol (NU,) = coS§ LF0/ (6.2)

z 2
ﬂ.’l -+ ,@? #Yl = {. (643)

The expression (6,1) shows that the vector of group speed U
(and also the vector S, see Section l4) lies always on the plane
(NHy). The expression (6,2) determines the angle between N and U
(see Tigures 5 and 6), while (6+3) is the known condition connecting

the angular coefficients of the straight line.

If in the given interval of v values we know the values of
& , Y and cos LV (“’H’ﬁ}{”" \rH are assumed to be constant),
then from (6.1) - (6.3) we may determine the totality of values

needed to build the functions d( (v), lar (v), T‘ (v)e

The values of Ll/o for the interval of v in the function of

the angle between the normal N and Ho (\(HON = cos HoN) are cal-

Declassifiod in Part - Santtized Som Aparoved for Releace 5012104126 . CIA-RDP82.00036R000206150098.7 ¢+ ‘
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culated and presented in Fligures 5 and 6, As for the values of

& (v) and\( (v), they are determined from the equations

LN, HoN) = siw Zo (6,1)

(law of Snellius), and

ol 2ya +y47, )
where & (v) = sin)é s \{ (v) = cos/'{:, and?& is the angle between
N and the Z axis (see Figure 9)s The determination of & (v) and
Y (v), or, to make further calculations easier, the determination
of the fu.nction%(v), is best achieved by way of a graph with the

intersection of the family of curves

y . Siwn .g,a ?
ot T a,Y‘C, SN L, S
/ CW ?EYHDN) whew v = Oo/&/’a’t (6.6)

and

- ave ST —d/;z’:*ﬂ/(“ﬁmow)’“-f{ﬁ-y’*n W +Y 5
S ()

obtained from (6.5). This is so because of the complexity of the

expression n(v, sin 7C¢H + cos%\{/f ) (see (2.13)).

Figure 10 shows the respective families of curves for ny
(with/'Za = 5°), while Figure 11 shows the same for no. (A large
number of graphs in the interval ZD = 2 & 26° was needed for a

detailed analysis, Here we render only a small part of the total.)

-
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The Aeasove oF fh Angle hetweew My Awd M s ru deg rees

Figure 10. Family of curves of the quanti‘oy}/, calculated accord-
ing to formula (6.6). Dotted lines are for the fixed values of v
and according to the formula (6.7)s Black lines are for the fixed

values of & and YH = 0,0L09 for the common wave (nj) in rela-
1

tion to Yy y
0

On the figures, the families of curves (6.6) are drawn with dotted

lines. Next to each one is indicated the corresponding value of V.
The group of thick lines represents the curves (647) which are con-
structed for the fixed values of &//in the interval ‘oeﬁ// = 0 & 0.3387
and for the constant value Y = 0.9409, In all the calculations it
is assumed that h? = 0.1, (In choosing the numerical values of the

parameters we were guided by the comparison of calculations with

- 32 -
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experimental rasults (5).) In order to reduce the size of the
drawings, the families of curves (6.6) and (647) were. drawn SO
that the corresponding values of be taken into consideration
corresponding to the direction of the arrows placed next to the
curves. The direction of the arrows indicates the direction of
novament® of the wave front, first upwards from the beginning of

the layer, then downwards from the point of wave reflectione

Fov w*) xo-.: &

4

ﬂle— easvre o tha :\-«u?»'.e Eei'wasu Ho Avd N isiw Eiﬂ:\‘ftcS

Figure 1l. Same as in Figure 10, but for an uncommon wave (np)
Fov N 'Zn:»:-' //o

e S——

-

Figure 12, Curve of the relation between XJ and v with?ia = 11°

for a common wave (ny)
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For niy Ko =l®

-]

X/V/\

Figure 13, Trajectory of the normal to the front of an infinite

flat monochromatic wave for various values of LP H

The points of intersection between the two families of curves
on the drawings give us the totality of the values of% and of the
corresponding values v and THON thus making a graphic presentation
of;i = ;L/()/) and of the desired fuentions & =4 (¥) and \{ = \6 YY)
possible, By way of illustration, Figure 12 shows the curve for just
one case (for ny). The arrow next to the curve shows the direction
of movement of the wave front in relation to the axis Z. (It should
be said that the author mostly utilized tables of the values for the
various functions, rather than graphs in all his calculations,)

’

An examination and an analysis of the function%(v) shows

that its progress is asymmetrical.

This is explained by the asymmetrical nature of the progress
of the ray in relation to H, and leads us to the complex kinematics
of the normal of the wave front in the layer (first noted by Zhekulin
[3] as already indicated in the Introduction), and in particular to
the fact that the turn of the wave front into the opposite direction

(reflection of a flat monochromatié wave) happens not with those

“ Declassified in Part - Sanitized Copy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120028-7
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values of v (and correspondingly of n) where Y’n 0, but rather
with higher values of v {smaller than n). The trajectory of the
normel to the wave front (common and uncemmon) traces a loop as it
turns downwards. Figure 13 showg the results of-a graphic presenta-
tion of the corresponding curves for a common wave (n}) and the
values /Zo = 11° with various values of l/.)// + Henceforth (’JHwill
mean the angle between the X axis and the projection of the vector
of the external magnetic field H, onto the plane XY, i.e, the angle
between the horizontal component of the magnetic vector and the
plane of wave descent (see Figure 9). From Figure 13 we see that,
when Hy lies on the plane perpendicular to the plane of descent,
then the trajectory of the normal of the wave front is symmetrical
in relation to the point of reflection. The curve with'Y[f = 0, or
T has the biggest loops We shall also see that the t rajectory of

the signal does not possess these peculiarities.

Thus we obtained all the data necessary to find the desired

values of d;(vj} /5) (‘/) ‘{l(V) f

From the equations (6.1) % (6.3) we obtain the following

formulas which are convenient for the calculation:

g, = it
r el (7.8)

Ly =ANS 4 cos ¢, Yfr‘"Aa’/eﬁ\(“s%(?ﬂ)

where

Z
A= G X7 7
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For the totallty of the v velues and of the corresponding

valuescl /\( and L}/, (and also 7’ HoN) obteined by the method

/31 . Y, ob~

shown, we have computed tables of the values of &,

tained by means of formulas (7.8) and (749)s For further manipule~

! : tions it will be more convenient to use the values of the angular

coafficients of the projections of the rey trajectory (vector U)

upon the coordinate planes. The corresponding angles with the

X axis (on the plane XY), with the 2 axis (op the plane ¥2) and with ]

the Y axis (in the plane YZ) are the results of these tables, Namely

Yy = Ave Trawv ff_ |

/

Lle_\ = /?Yc,’rﬁ«f/ TR _‘
T
(7.10)

\-1)‘* 2 = AVG.TA'/V EM) ‘

-
i
!

17 The tables which we composed allowed us to analyze the tra-

jectory of the ray and also to explain the peculiarities of the

] [ reflected wave. The pertinent results are treated in the following

7. STUDY OF THE RAY TRAJECTORY IN THD TONOSPHERE

|
sections. » ’!
|
|
\,

| Tn this section we bring the results of the calculation of

: the ray trajectory in the ionosphere which we conducted on the basis

of a large number of graphs traced for various particular cases, and

of tables composed with the help of the formulas cited sbove, In a

number of drawings refle

cting one part of these results, we show

how the trajectories of the ray change in relation to the change of

in P: N it rARY A~ y .
in Part - Sanitized Copy Approve Release 2012/04/26 : CIA-RDP82-00039R000200120028-7



various parameterse

All graph constructions were carried out for a linear layer,
For layers of other shapes, for instance with a parabélic distribu~
tion of ionization, the effects here presented, as the analysis of
the formulas will show, have an identical qualitative course and

differ only in size.

Figures 1L and 15 show projections of the ray trajectories
upon a horizontal plane (XY) for various values of WH with £, = 59,
respectively for common (n]) and uncommon (np) waves. The direction
of the ray motion (from the beginning to the end of the layer) is
-marked by the arrows on the drawing. We see that the ray, entering
the layer, leaves the X axis, i1.¢., leaves the plane of descent.
With low values of(#f{ the ray of a common wave travels into the
opposite direction for part of its way in the deep regions of the
layer (with high v values and low n values)., Because of the asym-
metric nature of the ray trajectory the ray comes out of the layer
at a certain distance from the initial direction of the X axis,
WithlpH = 0 (this is not shown on the drawing), the trajectory of
the ray is flattened and the ray constantly remains in the plane
of descent. The biggest deflection of the ray from the plane of
descent occurs with a certain intermediate value of?}ﬂ in the
interval of values (}}H =0 %l{. With L&)H _—._:__E, the progress of
the ray is symmetrical in relation to the point of reflection, so
that in the final analysis, the ray returns to the plane of descent,
The ray progress of a common wave differs from that of an uncommon
wave in that on the path of the ray's progress in%he layer its sign

of deviation from the plane of descent is different for each type

of wave. The common wave deviates from the plane of descent in the

- 37 -
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direction of the positive s:Lgr; of the Y axis, while the uncommon

wave deviates in the negative direction. As the ray returns from

the layer, the uncommon wave deviates from the plane of descent
into the direction of the posltive side of the Y axis. However -
the degree of deviation of the ray from its initial direction has § S

the same sign for both waves. It is higher for the common wave.

Also, the trajectory of the ray of a common wave is somewhat more

complex. It should be noted that all the drawings are in the right
scale, so that their relative measures may serve as criterions for ‘ |
the effects observed. So, for instance, on Figure 1hL, for lPH: 27°,

AB = 1/3 OA, which means that the ray, in this case, comes out of

the layer on the side of the initial direction at a distance equal

approximately to 1/3 of OA (the range of wave propagation).

0w . — 4~ 0 2
F Y\\,X‘-—é ii

e

Figure 1. Projection of the ray trajectory (signal) upon a hori-

zontal plane XY for various values of ({1“ when }/a = 5° for a com-

i
i& ‘ mon wave (nq)
|
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but for an uncommon wave (n2)

Tigure 15. The same as in Figure 1l

Figure 16 shows the projections of the ray trajectory of a

ave (for np) for various values of ly’H and)_/,g = 59 at the

while Figure 17 shows the same for plane Y7

common W

plane of descent XZ,

perpendicular to the plane of descent. The figures clarify all the

characteristic peculiari’oies of the ray's progresss One should

note a new important condition which derives from Figure 16, From

it we see that with a given angle Z" (angle of descent of the wave

upon the layer) the propagation range of the ray for a common wave

(distance 0X) strongly depends from the angle \*) H -

- -
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| M.gure 17 clearly ahows tha side deviation of the ray 0¥
which we mentioned before. Tigure 18 shows the respective pro-
jections of the ray trajectory for an uncommon wave (for ng)

From the figures we see the peculiarities of the ray trajectory

which interest uSe

| ’—OY- \ﬂl) ¢°5~5‘-

il

2}

Tigure 184 Projections of the ra&y trajectory (signal) of an uncom-
mon. wave {(ng). upon the plane of descent Xz (upper part of the figure)

and upon the plane y7 (lower part of the figure), for various values

of ‘VH with Lo =5
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The preceding figures characterized the trajectory of tbe
ray in the layer for a fixed value of the angle of descent;zg.
However it 1s interesting to examine the relation between these
effects and ?{o o Figures 19 and 20 show a few results of such an
analysis, PFigure 19 shows that with an increase of the angle of
descent 2’0 the corresponding deviation of the ray %TE&; from the
plane of descent decreases and tends tow&rds zero. In the region
of low values of )ﬁo the corresponding deviation is large, Here
it has its maximum, However, as the limit passage shows, in the
region of low values ofxo the size of AB swiftly decreases with
a decrease oi‘x° and becomes equal to zero with Za = 0 (see
Figure 20), With a vertical descent ( 7g°= 0) the ray at first
deviates considerably from the plane of descent, Its trajectory
lies on the plane (ZHO). On the way back, the reflected wave has
the same trajectonf, so that the ray leaves the layer at the same
point where it entered. The corresponding projections of the ray

trajectory are shown in Figure 20,

F‘ovj’)l.’) q)H:. 27P

Figure 19. Projections of the ray trajectory (signal) of a common

wave (n1) upon the plane XY for various values of the angle of

descent ]{ o WD Py = 27°
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Figure 20, Projections of the ray trajectory (signal) of a common

wave (nl) upon ‘the plane of descent XZ (upper part of the figure)

and upon the plane YZ (lower part of the figure) for various values

of with = 27°
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Figure 21 gives the axonometric presentation of the ray
trajectory of a common Wave in the ilonosphere. Here its peculiar=

itles are clearly visibles

Tigure 21. Axonometric presentation of the ray trajectory (signal)

of a comnon wave in the ionosphere

From this analysis of the ray trajectory in the ionosphere
it is absolutely clear that the wave reflected from it does not
have a spherical shape (if the descending wave is spherical) and
that in the horizontal plane XY (on the surface of the earth) the
shape of the wave front is not circulare This happens because the
receiving point gets not that segment of the wave that has issued
from the radiation point and whose normal passed through the receiv-

ing point, but another segment of the wave whose normal formed a

o}

certain angle with this initial directione
. 5

@
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I The direction of the wave front at the receiving point which
- here, because of the isotropic nature of the medium coincides with
the direction of the group speed vector and with Pointing's vector

S, forms a certain angle with the line connecting the receiving

point with the polnt of radiation.

The corresponding topographic picture on the plane XY for a
common wave with X—o = 50 is shown on Figure 22, Here the point O
indicates the cireular shape of the descending wave front., We see
how certain segments of the wave front (1 ~ 5) are transferred on

their way from the entrance into the layer to the exit, respectively,

to the points (1' - 5')s The normals of these segments of the wave
form (w:_thkp H 7{ and (‘UH;:E 2”) a sharp angle with the true
direction ~- the line comnecting points (0.1'), (0.2'), (0.3'),
(0sb1), (0.51).

Figure 22, Family of projections of ray trajectories (signals) of a

common wave (nj) upon a horizontal plane (XY) in relation to L‘j H

- L5 -
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In the figure, at points L' = 5' the true direction is
indlcated with a thin arrow while the wave front is indicated with

a black arrowe

Figure 22 proves that in the plane XY the reflected wave

has an elliptical shape,

As a result of the plottinés, part of which are shown in the
above figures, it was possible to calculate the relation between
the angle (between the direction of the normal of the reflected
wave front and the line connecting the receiving point with the
point of observation in the horizontal plane) and the angle
both for common and uncommon waves (n1) and (n2) respectively,
(See Tigure 23) The sign of the angle is positive with a clockwise

readings P

'/ Fo\rmk

S

/ Cot s

3 \—

Figure 23. Relation of the angle between the direction of the nor-
mal to the front of a reflected wave on a horizontal plane and the

““Xfue direction, to the angle %JH for a common wave (thin line), and

jﬂp an uncommon wave (thick line) with a descent angle of 5°:.

- 16 -
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One must bear in mind that the precision of the data ob-
tained is subject to the precision of graph plotting and therefore
there are quantitative errors of the order of a few percent. ‘The
cﬁrva a (IPH ) is built for the interval -_g:i + %_r. An analysis
shows that it is not symmetrical in relation to the points

\? K== gg;. This circumstance and other peculiarities of the ray
trajectory are made comprehensible by basic physical considerations,
to Wit that in a magnetically active medium the principle of reci-
procity is nonexistent. Phenomena occur in different ways depending

on whether the waves propagate along or against the direction of the

external magnetic field.
8., BASIC CONCLUSIONS

In the preceding paragraphs we have shown the results of the
calculation of the propagation of electromagnetic waves in a mag-
netically active, nonhomogeneous medium, First we studied and gave
more precision to the general properties of the monochromatic wave
in a homogeneous medium, and then we did the same with the properties
of the quasi-monochromatic group of waves (signal). In the case of
the s nonhomogeneous medium in the direction of the 2 axis we
made certain indispensable generalizations in the approximation of
geometrical optics. In the latter part of the work we calculated
the trajectory ofthe ray in a nonhomogeneous medium of the ionosphere
type, which is characteristic in that in the direction of the Z axis
the refraction exponent of the medium evenly decreases from its va%ue
equal to one at the beginning of the layer. This leads to & de.‘viation

of the ray in the direction of 2 and to the-reflection of the wave =~

P

descending on the layer. We examined the relation betwsen the

character of the trajectory of the reflected ray and. the various

- U7 -
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parameters, We also examined the shape of the reflected wave.
This work allows us to make certain new conclusions:

(1) In a magnetically active medium, as a consequence of the
splitting of the linearly polarized wave into two elliptically
polarized waves which propagate in it at different speeds, the
position of Pointing's vector in the space of each wave is not con-~
stant: Pointing's vector traces a cone in each point. This cone
touches the normal to the wave front., Pointing's vector circles
the surface of the cone twice during each period., The basis of
this cone is a flat curve of elliptical shape, The line traced from
the apex of the cone through the center of its base lies on the
plane HoNe The direction of this line coincides with the direction

of Pointing's vector § averaged in time,

(2) It is absolutely clear that for a full and serious
analysis of the question it is physically correct to examine the
propagation of the quasi-monochromatic group of waves., This leads

to the necessity of studying the integral of Fouriers

The analysis of Fourier's integral allowed us to calculate
the direction and value of the vector U of group speed which char-

acterizes the propagation of the quasi~monochromatic group of waves,

A comparison of the vector U with the vector of Pointing 5
averaged in time, made by way of direct calculation, showed that

both vectors are collinear,

- . - - e
- -

The vector U is characterized by the following properties:

(a) It is placed in the plane containing the normal to

the wave front N and the vector of the external magnetic field Hoe

P- M8 -

R

L Declassified in Part - Sanitized Copy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120028-7




i ~»,ﬂ

D n—
eclassified in Part - Sanitized C
op

Approved f
or Relea: ‘
7 ‘ se 2012/04/26 : CIA-RDP82-000: 5
-00039R000200
120028-7

ing the yeluwe of ghe grouwp

UL aevermin
g the yalue of

(o) The fo
grom ‘the formuke de'bwminin

group

gpeed y differs
spead Uo when Ho = O
Ug

15 equal to the cosing of the

(c¢) The proportion T
and N ab 2 glven point of the

medim.

angl.e petween the vectors U
alization of the pesulls obtained for

(3) A girect gener
1ed medivm (no

gneous syratif nhomogene'lw in

of & nonhonog
galcula—

the ¢aseé
the girection of the a.xié)gwe the usual formula for the
e time of the group retarda‘aion of ‘the signale Tor the

from the ion

gion of thi
ew & condition not

gion of the ra&y

osphere We dr

reflec

coinclding with the correspondi\.ng, condition for the 1sotropic
(ins’oead of the formulas commonly used)
for the de’uermina‘oion of the jonization degree of thab reglon of
the layer in which @ wave of & given frequency peflects ypon its

glanted descent OB the layeTe
(L) The formulas obtained and the general properties of the
£ these formulas allowed uS» by

ned ghrough the analysis ©
n of graphs and direch calc

0o establish

ray determi
wletions

lar coeff.icien‘os of the ray

£ a combinatio
values of angl

way o
a series of tables of the
grajectorye These Lables are ga’ohered for 2 sign‘l_ficanb diapason
of transfomation of indivldual parameters. Thi.s allowed US 1o
followW the 1imit passages of the Ta&Y grajectorye
the diapason of ‘oransforma*oion of the individual

mparison with

The cholce of
¢ a closer co

para‘me’oers was di.ctated vy the necessity o

experimen'bal resullise
The £ollowing proper‘m‘-es of ‘the T&) yrajectory have been

e stablishe ds

R

R

W

e IS




i
i
¥
¢
3|

Appre '
pproved for Release 2012/04/26 : CIA-RDP82-00039R000200120028
: -7

Declassified in Part - Sanitized Cop

(a) The ray grajectory is a space non-flat curve. The

rays lssue from the plane of descent. Exceptional 18 the case when

the vector of the external magnetic figld lies in the plane of

descent. In this case the ray Lrajectory remains in the same planee

(b) The ray trajectory is not symmetritcal in relation

to the point of reflection and the ray does nob return to the plane

of descent. Ina horizontal plane it does nobt leave‘the layer

along the ipitial direction (projaction of the normal at the point

of descent to the layer), but to one side of it. Moreover, at this

point the direction of the wave pormal. coincides with its direction

to ‘the point of 1ssuee

An exception is the case when the vector of the external

magnetic field lies in the plane perpendicular to the plane of

descent. In this case the ray trajectory is symmetrical in relation

4o the reflection point and the ray returns Lo the plane of descent --

comes oub of the medium in the initial directione

(c) The relative deviation of the ray in the horizontal

plane has the same sign for the common and uncommon Waves and differs

only in size -= it is higher for & common Wavee The trajectories

of the common and the uncommon waves also differ in many details.

So, for instance, in the cases examined, the ray of a common wave

propagates in certaln parts of the layer in the opposite directione

(d) The properties of the ray indicated in (a), (b) and

(c) lead to the fact that the reflected wave does not keep the

spherical shape of the descending wave =- in the horizontal plane

the wave front has an elliptical shape.
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(e) The directicn of the incoming ray at the receiving
point does not coincide with the dlrection of the line which con-
nects it with the radiation point. It forms with it a certaln
angle 4 the sign and magnitude of which depends on the angle be-
tween the projection of the vector of the external magnetic field
and the plane of descent. As the distance between the points of
radiation and reception grows, i.e., as the angle of descent onto
the layer increases, the magnitude of this angle  gradually de-
creases and tends towards zero. The magnitude of this angle reaches
10 and in certain cases 20 and more degrees with comparatively small

distances from the radiator,

Upon vertical descent onto the layer, the ray at first propa-
gates on the plane H N. It returns along the same trajectory and

leaves the layer at the same pointe

(5) The conclusions mentioned above derive from a theoretical
analysis of the ray trajectory in the ionosphere. They indicate that
for practical calculations and for the processing of data on the

ionosphere it is indispensable:

(a) To take into consideration the relation between the
range of ray propagation, especially for close distances, and Y)H and

other paramete}s which at the present time are not considered,

(b) Strictly speaking it is necessary, while calculating
the degree of ionization of the layer at the point of refiection with
a slanted descent onto the layer, to take advantage of the condition
(formula (5.21)), which is correct for the ionosphere if we consider

its state of anisotropye
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() When finding the direction of the ray, especlally
for close distances, it is necessary to take into consideration the
correction made above (see Figure 23). This correction is the con-
sequence of the anisotropic properties of the ionosphere, This is
an "error in direction finding" which results from the nature of

’things .

This increasing precision may lead in certain cases, as may
be seen from the numerical examples mentioned above to substantial

quantitative changes, ) 3

Physics Institute imeni P. N. Lebedev

Academy of Sciences USSR
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